Examples for kinetic evaluations using kinfit

Johannes Ranke

Eurofins Regulatory AG
Weidenweg 15, CH–4310 Rheinfelden, Switzerland

and

University of Bremen

December 18, 2014
1 Kinetic evaluations for parent compounds

These examples are also evaluated in a parallel vignette of the mkin package (mkin, 2013).
The datasets are from Appendix 3, of the FOCUS kinetics report (FOCUS Work Group on Degradation Kinetics, 2006, 2011).

1.1 Laboratory Data L1

The following code defines an object containing the example dataset L1 from the FOCUS kinetics report, p. 284

R> library("kinfit")
R> FOCUS_2006_L1 = kinobject("Parent", "Degradation data", "")
R> FOCUS_2006_L1$data = data.frame(
+ t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
+ parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
+ 72.0, 71.9, 50.3, 45.1,
+ 27.7, 27.3, 10.0, 10.4, 2.9, 4.0))

The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analyses given in the FOCUS report.

R> FOCUS_2006_L1$fits <- kinfit(FOCUS_2006_L1$data,
+ kinmodels = c("SF0", "FOMC", "DFOP"))
R> FOCUS_2006_L1$results <- kinresults(FOCUS_2006_L1$fits)
R> kinreport(FOCUS_2006_L1)

Parent compound: Parent
Study type: Degradation data
System:
kinit version: 1.1.13
R version: 3.1.2
Report generated: Thu Dec 18 09:42:04 2014
Data:

<table>
<thead>
<tr>
<th>t</th>
<th>parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
</tr>
</tbody>
</table>

Nonlinear least squares fit of the SFO model

Parameter estimation:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>Pr(>t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent.0</td>
<td>92.4710</td>
<td>1.36830</td>
<td>67.6</td>
<td>0.00e+00</td>
</tr>
<tr>
<td>k</td>
<td>0.0956</td>
<td>0.00388</td>
<td>24.6</td>
<td>1.87e-14</td>
</tr>
</tbody>
</table>

Chi2 error estimation: 3.42 %

Endpoint estimates

<table>
<thead>
<tr>
<th></th>
<th>DT50</th>
<th>DT90</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFO</td>
<td>7.2</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Obviously, the FOMC model and the DFOP model were not fitted. As discussed in the kinfit vignette of this package, this occurs when the SFO model fits very well.

We can try to force the FOMC fit using the parameters obtained using mkin.

R> FOCUS_2006_L1$fits <- kinfit(FOCUS_2006_L1$data, + kinmodels = c("SFO", "FOMC", "DFOP"),
+ start.FOMC = list(parent.0 = 92.47, alpha = 1.35e11, beta = 1.41e12))
R> FOCUS_2006_L1$results <- kinresults(FOCUS_2006_L1$fits)
R> kinreport(FOCUS_2006_L1)

Parent compound: Parent
Study type: Degradation data
System:
kinfıt version: 1.1.13
R version: 3.1.2
Report generated: Thu Dec 18 09:42:04 2014

Data:
 t parent
 1 0 88.3
 2 0 91.4
 3 1 85.6
 4 1 84.5
 5 2 78.9
 6 2 77.6
 7 3 72.0
 8 3 71.9
 9 5 50.3
10 5 59.4
11 7 47.0
12 7 45.1
13 14 27.7
14 14 27.3
15 21 10.0
16 21 10.4
17 30 2.9
18 30 4.0

Nonlinear least squares fit of the SFO model

Parameter estimation:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>Pr(>t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent.0</td>
<td>92.4710</td>
<td>1.36830</td>
<td>67.6</td>
</tr>
<tr>
<td>k</td>
<td>0.0956</td>
<td>0.00388</td>
<td>24.6</td>
</tr>
</tbody>
</table>

Chi2 error estimation: 3.42 %

Endpoint estimates

3
It still does not converge. As discussed in the kinfit vignette, the FOMC model usually is not returned by kinfit when the SFO model fits very well. This should be seen as a feature, not a bug, as the FOMC model is ill-defined in such cases.

A plot of the fit is obtained with the kinplot function.

```
R> kinplot(FOCUS_2006_L1, ylab = "Observed")
```

The residual plot can be easily obtained by

```
R> kinresplot(FOCUS_2006_L1, "SFO", ylab = "Observed")
```
1.2 Laboratory Data L2

The following code defines example dataset L2 from the FOCUS kinetics report, p. 287

R> FOCUS_2006_L2 = kinobject("Parent", "Degradation data", ")
R> FOCUS_2006_L2$data = data.frame(
+ t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
+ parent = c(96.1, 91.8, 41.4, 38.7,
+ 19.3, 22.3, 4.6, 4.6,
+ 2.6, 1.2, 0.3, 0.6))
Again, the SFO, FOMC and DFOP models are fitted and a report is printed.

R> FOCUS_2006_L2$fits <- kinfit(FOCUS_2006_L2$data,
+ kinmodels = c("SFO", "FOMC", "DFOP"))
R> FOCUS_2006_L2$results <- kinresults(FOCUS_2006_L2$fits)
R> kinreport(FOCUS_2006_L2)

Parent compound: Parent
Study type: Degradation data
System:
kinfit version: 1.1.13
R version: 3.1.2
Report generated: Thu Dec 18 09:42:04 2014

Data:
```
t    parent
1     0   96.1
2     0   91.8
3     1   41.4
4     1   38.7
5     3   19.3
6     3   22.3
7     7    4.6
8     7    4.6
9    14    2.6
10   14    1.2
11   28    0.3
12   28    0.6
```

Nonlinear least squares fit of the SFO model

Parameter estimation:
```
        Estimate Std. Error t value Pr(>t)  
parent.0   91.47    3.807   24.03 1.77e-10
k         0.663     0.072   9.31 1.52e-06
```

Chi2 error estimation: 14.38 %

Nonlinear least squares fit of the FOMC model

Parameter estimation:
```
        Estimate Std. Error t value Pr(>t)  
parent.0   93.77    1.856   50.51 1.17e-12
```

6
\begin{verbatim}
alpha 1.37 0.257 5.36 2.30e-04
beta 1.23 0.363 3.40 3.95e-03

Chi2 error estimation: 6.2 %

Endpoint estimates

\begin{verbatim}
DT50 DT90
SFO 1.0 3.5
FOMC 0.8 5.4
\end{verbatim}

Here, only the DFOP did not converge using default parameters. The DFOP fit can be obtained using refined starting parameters:

\begin{verbatim}
R> FOCUS_2006_L2$fits <- kinfit(FOCUS_2006_L2$data,
+ kinmodels = c("SFO", "FOMC", "DFOP"),
+ start.DFOP = list(parent.0 = 94, g = 0.4, k1 = 142, k2 = 0.34))
R> FOCUS_2006_L2$results <- kinresults(FOCUS_2006_L2$fits)
R> kinreport(FOCUS_2006_L2)
\end{verbatim}

Nonlinear least squares fit of the SFO model
\end{verbatim}
Parameter estimation:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>Pr(>t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent.0</td>
<td>91.466</td>
<td>3.8065</td>
<td>24.03</td>
<td>1.77e-10</td>
</tr>
<tr>
<td>k</td>
<td>0.663</td>
<td>0.0712</td>
<td>9.31</td>
<td>1.52e-06</td>
</tr>
</tbody>
</table>

Chi2 error estimation: 14.38 %

Nonlinear least squares fit of the FOMC model

Parameter estimation:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t value</th>
<th>Pr(>t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent.0</td>
<td>93.77</td>
<td>1.856</td>
<td>50.51</td>
<td>1.17e-12</td>
</tr>
<tr>
<td>alpha</td>
<td>1.37</td>
<td>0.257</td>
<td>5.36</td>
<td>2.30e-04</td>
</tr>
<tr>
<td>beta</td>
<td>1.23</td>
<td>0.363</td>
<td>3.40</td>
<td>3.95e-03</td>
</tr>
</tbody>
</table>

Chi2 error estimation: 6.2 %

Endpoint estimates

<table>
<thead>
<tr>
<th></th>
<th>DT50</th>
<th>DT90</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFO</td>
<td>1.0</td>
<td>3.5</td>
</tr>
<tr>
<td>FOMC</td>
<td>0.8</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Again, even with starting parameters very close to the optimum obtained using mkin, there is no convergence with kinfit. However, when looking at the fit obtained using mkin plotted in the mkin vignette, it is clear that the point where the break point of the curve, caused by the large difference between k1 and k2, is not clearly defined by the data. Therefore, it should be seen as a desirable feature of the underlying nls() function that no solution is returned.

Comparison of χ^2 error levels of the two models shows that the FOMC model allows for a better representation of the data. This is also obvious from the plot of the fits.

R> kinplot(FOCUS_2006_L2, ylab = "Observed")
Residual plots are obtained using `kinresplot`.

```r
R> par(mfrow=c(2,1))
R> kinresplot(FOCUS_2006_L2, "SFO", ylab = "Observed")
R> kinresplot(FOCUS_2006_L2, "FOMC", ylab = "Observed")
```
1.3 Laboratory Data L3

The following code defines example dataset L3 from the FOCUS kinetics report, p. 290 and attempts to fit the SFO, FOMC and DFOP models.

```R
R> FOCUS_2006_L3 = kinobject("Parent", "Degradation data", "")
R> FOCUS_2006_L3$data = data.frame(
+   t = c(0, 3, 7, 14, 30, 60, 91, 120),
+   parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
R> FOCUS_2006_L3$fits <- kinfit(FOCUS_2006_L3$data,
+   kinmodels = c("SFO", "FOMC", "DFOP"))
```
R> FOCUS_2006_L3$results <- kinresults(FOCUS_2006_L3$fits)
R> kinreport(FOCUS_2006_L3)

Parent compound: Parent
Study type: Degradation data
System:
kinfit version: 1.1.13
R version: 3.1.2
Report generated: Thu Dec 18 09:42:04 2014

Data:
 t parent
1 0 97.8
2 3 60.0
3 7 51.0
4 14 43.0
5 30 35.0
6 60 22.0
7 91 15.0
8 120 12.0

Nonlinear least squares fit of the SFO model

Parameter estimation:
 Estimate Std. Error t value Pr(>|t|)
parent.0 74.8718 8.45736 8.850 5.78e-05
k 0.0253 0.00824 3.074 1.10e-02

Chi^2 error estimation: 21.24 %

Nonlinear least squares fit of the DFOP model

Parameter estimation:
 Estimate Std. Error t value Pr(>|t|)
parent.0 97.7460 1.438160 68.000 1.40e-07
k1 0.5162 0.068841 7.500 8.46e-04
k2 0.0138 0.000812 16.900 3.56e-05
g 0.4566 0.017970 25.400 7.12e-06

Chi^2 error estimation: 2.22 %

Endpoint estimates

<table>
<thead>
<tr>
<th></th>
<th>DT50</th>
<th>DT90</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFO</td>
<td>27.4</td>
<td>91.1</td>
</tr>
<tr>
<td>DFOP</td>
<td>7.5</td>
<td>123.0</td>
</tr>
</tbody>
</table>

In this case, the FOMC model does not return a solution using kinfit. Trying with closer starting parameters gives success this time.

```r
R> FOCUS_2006_L3$fits <- kinfit(FOCUS_2006_L3$data,
  + kinmodels = c("SFO", "FOMC", "DFOP"),
  + start.FOMC = list(parent.0 = 100, alpha = 0.5, beta = 2))
R> FOCUS_2006_L3$results <- kinresults(FOCUS_2006_L3$fits)
R> kinreport(FOCUS_2006_L3)
```

Nonlinear least squares fit of the SFO model

Parameter estimation:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----|----------|------------|---------|---------|
| parent.0 | 74.8718 | 8.45736 | 8.85 | 5.78e-05 |
| k | 0.0253 | 0.00824 | 3.07 | 1.10e-02 |

Chi2 error estimation: 21.24 %
Nonlinear least squares fit of the FOMC model

Parameter estimation:

| Parameter | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|----------|------------|---------|----------|
| parent.0 | 96.974 | 4.550 | 21.31 | 2.11e-06 |
| alpha | 0.422 | 0.072 | 5.87 | 1.02e-03 |
| beta | 1.858 | 0.881 | 2.11 | 4.44e-02 |

Chi2 error estimation: 7.32 %

Nonlinear least squares fit of the DFOP model

Parameter estimation:

| Parameter | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|------------|---------|----------|
| parent.0 | 97.7460 | 1.438160 | 68.0 | 1.40e-07 |
| k1 | 0.5162 | 0.068841 | 7.5 | 8.46e-04 |
| k2 | 0.0138 | 0.000812 | 16.9 | 3.56e-05 |
| g | 0.4566 | 0.017970 | 25.4 | 7.12e-06 |

Chi2 error estimation: 2.22 %

Endpoint estimates

<table>
<thead>
<tr>
<th></th>
<th>DT50</th>
<th>DT90</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFO</td>
<td>27.4</td>
<td>91.1</td>
</tr>
<tr>
<td>FOMC</td>
<td>7.7</td>
<td>431.2</td>
</tr>
<tr>
<td>DFOP</td>
<td>7.5</td>
<td>123.0</td>
</tr>
</tbody>
</table>

R> kinplot(FOCUS_2006_L3, ylab = "Observed")
Based on the χ^2 error level criterion and the visual analysis of the fits, the DFOP model would be the best-fit model of choice for laboratory data L3.

1.4 Laboratory Data L4

The following code defines example dataset L4 from the FOCUS kinetics report, p. 293 and attempts to fit the SFO, FOMC and DFOP models.

```r
R> FOCUS_2006_L4 = kinobject("Parent", "Degradation data", "")
R> FOCUS_2006_L4$data = data.frame(
+   t = c(0, 3, 7, 14, 30, 60, 91, 120),
```
FOCUS_2006_L4$fits <- kinfit(FOCUS_2006_L4$data,
+ kinmodels = c("SFO", "FOMC", "DFOP"))
R> FOCUS_2006_L4$results <- kinresults(FOCUS_2006_L4$fits)
R> kinreport(FOCUS_2006_L4)

Nonlinear least squares fit of the SFO model

Parameter estimation:

| Parameter | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------|----------|------------|---------|----------|
| parent.0 | 96.44152 | 1.948781 | 49.5 | 2.28e-09 |
| k | 0.00654 | 0.000523 | 12.5 | 8.01e-06 |

Chi2 error estimation: 3.29 %

Nonlinear least squares fit of the FOMC model

Parameter estimation:

| Parameter | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------|-----------|------------|---------|----------|
| parent.0 | 99.143 | 1.680 | 59.02 | 1.32e-08 |
| alpha | 0.704 | 0.262 | 2.68 | 2.18e-02 |
| beta | 64.980 | 36.617 | 1.77 | 6.81e-02 |

Chi2 error estimation: 2.03 %
Nonlinear least squares fit of the DFOP model

Parameter estimation:

| Parameter | Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|----------|------------|---------|---------|
| parent.0 | 98.7514 | 1.33707 | 73.857 | 1.01e-07|
| k1 | 0.0105 | 0.00449 | 2.348 | 3.93e-02|
| k2 | -0.0112 | 0.01884 | -0.596 | 7.08e-01|
| g | 0.9390 | 0.18530 | 5.068 | 3.57e-03|

Chi^2 error estimation: 1.63 %

Endpoint estimates

<table>
<thead>
<tr>
<th></th>
<th>DT50</th>
<th>DT90</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFO</td>
<td>106.0</td>
<td>352.0</td>
</tr>
<tr>
<td>FOMC</td>
<td>108.9</td>
<td>1644.1</td>
</tr>
<tr>
<td>DFOP</td>
<td>118.7</td>
<td>122.8</td>
</tr>
</tbody>
</table>

R> kinplot(FOCUS_2006_L4, ylab = "Observed")
Although the χ^2 error level is slightly smaller for the DFOP model and also for the FOMC model, the differences are small, and the SFO model may appear to be a suitable choice. The better fit of the DFOP model depends very much on the last three data points.

References

mkin. *mkin*: Routines for fitting kinetic models with one or more state variables to chemical degradation data, 2013. URL http://CRAN.R-project.org. R package version 0.9-11.